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METHOD OF SOLUTION FREDHOLM'S INTEGRAL EQUATION OF THE FIRST KIND* 

S. N. VOROB'EV 

Solution of the Fredholm's integral equation of the first kind is approximated by 
expansion over the system of iterated right-hand sides. The convergence in the 
mean of the expansion towards the solution is proved. A class of equations with 
stable iterated right-hand sides in which the solution is reduced to investigating 
numerical sequences, is singled out. 

In the theory of linear filtration an important part is played by the Fredholm's integral 
equation of the first kind T s K&r)cp@)d?=S(t), o<~<T 

0 

the solution q(t) of which determines the weight function sought, of a physically feasible 
linear filter h(t) = cp (T - t) 

The necessary and sufficient condition of existence of a unique solution of equation (1) with 
closed symmetric kernel K (t, T) and S (0 E &zlO, Tl , is given by the Picard theorem /l/. In 
practice, it is difficult to obtain the solution of (1). The known methods, apart from the 
numerical ones, include the method of expanding the function IQ(~) over some complete system 
of functions /2/, and the method of consecutive approximations /3/. 

The function can be expanded into a Fourier series 

(2) 

by virtue of the 
ponding equation 

Hilbert-Schmidt theorem /1,2/, but this requires a solution of the corres- 
of the second kind 

! 
K (t, T) eii(r)dr = Q,(L) 

II 

Investigation of the series (2) yields a new method of solving equation (1) with a closed, 
symmetric positive definite kernel and S (G E L, [O, Tl. 

Solution in the space L,. The partial sum of the series (2) 

represents the optimal approximation in the mean to the function q(t)~ L, 10, T]. Let us use, 
instead of the coefficients ‘pk = Sk 1 hk I the approximations (PIN = Sk/h,... If we approximate 
a& by means of a partial sum of the power series which has the form 

near the point hk= 1 and converges uniformly in the region O<hk<P, then we have 

N 

(PkN = Sk 2 ti - hk)’ 
i=o 

From the bilinear expansion of the kernel 
m 

K (‘9 T) = 2 A,& @) e,f tT) 
k=l 

it follows that the square of its norm is 

K” (t, T) dt d? = 5 ‘kz 
k=, 

(3) 
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Let AX* = B-1& . Then 
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the normed eigenvalues satisfy the inequality 

1 > 1,” s, h,’ > . > 7rk* > . . . >, 0 (4) 

and the approximation (3) is correct. Clearly, the solutions of the equations with unnormed 
and normed kernels are connected by the simple relation 

'F (O &' (f) 
so that from now on we shall assume that the inequaLity (4) holds also for J.h-. 

The necessary and sufficient condition of convergence in the mean is established using 
the Fischer-Riesz theorem: if 

then hf.r) converges to f(+)in the mean: 
iilii frl (.x) f i% f (4 E L, la, bl It--r-z 

Theorem. Let K(~,T) be a symmetric, positive definite l.$-kernel. s (t) E L1 IO. ?‘I , and 
let the equation (1) have a unique solution. Let also hk< 1 and P>; (1) be the eigenvalues and 
eigenfunctions of the kernel K (t. T), and S& the coefficients of expansion of S(i)over the 
system of functions Q (O. Then the partial sum 

R 

'Fs_v w- $Q (&j ei; (97 J&l = i; (i - x,ii 
(5) 

i=o 

converges in the mean to the solution ~((1) of the equation. Let O>H. Then we have 

’ ,\ I’FlC.\ (0 - ‘PQM (f)]‘df =: ; Sk2 2; - 2 i St,2 2, x,,, j g ,Sb% 21, 
I;=-1 k -1 

Since t&e series (3) converges uniformly, we can write, taking into account (4)~ 

Then 

The conditions of the Fischer-Riesz theorem hold, therefore ~a~(<) converges in the mean 
to some functFon I' (t) E- L,, IO, Tl. Substitution of Q~(I) reduces the left hand part of the 
equation to the form 

Thus the function qRN(f) converts, in the limit, the equation into an identity, belongs to 
the space L, and, according to the condition of the theorem, is a unique solution of the 
equation. 

Using the function 
R 

we can write the partial sum (5) in the form 
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and the sum (7) converges, by virtue of the absolute convergence of the Fourier series, absol- 
utely to v(f) (in the mean). When R-CO, the functions (6) converge to 

to ft) = i -$eg ct) = s (*), 
B=1 

fl (f) = 2 2 hksiek (9 j ek (7) ei (x) dr = \ 5 hkek (t) ek (T) x 5 sic, (T) dz = \ K (t, T) S (T) dr 
k=li=l 0 il k=, i=* 

The iterated right-hand parts of the equation (l), i.e. the functions fn(t) , yield its 
approximate solution in the mean 

‘pN(q = ii (- 1): (1,:) fi (t) (8) 

Example 1. A linear frequency converter with the weight function h(t) is described 
by the equation 

j 
cos o,(t - r)/?(r) dr = cos 02t 

--T 

The iterated right-hand parts are 

fa (t) = cos o*t, f” (L) = up-’ eos qt, It = 1, 2, . . . . a = ~+sin(o~-w~) T + A sin @I + 0%) T, 
1 

j3=T+~sin2o,T 

The function 

(pN (t) = (N + 1) cos at + a ; (- 1)’ (?J pi-’ co9 qt 

i-l 

has no limit as N-W , therefore the equation has no solutions and no linear frequency con- 
verters of monochromatic oscillations of finite energy exist in the space L, L--T, Tl - 

Equation with stable, iterated right-hand parts. Solution (8) requires that 
the iterated right-hand parts of fn(t) be determined, and in this sense it is not preferable 
to the method of consecutive approximations /3/. We can however single out a class of equa- 
tions for which an exact solution can be obtained. 

Example 2. The Wiener-Hopf equation of linear filtration /5/ for the angle of heel 
of a ship /6/ is 

jK(L T) q (T) ds = K (t) --m (I), K (t) = e?’ 2n/t -;- -$ sin 2n/t 

0 

The iterated right-hand parts have general form 

fn (t) = e-=l (n,cos2nft+b,sin2nff),n=O,i,2,..., as=+, 
a 

b,=4nf> 

Clearly, the analytic solution of the equation can be written in the analogous form 
rp (L) = e-a' (A cos 2 n ft + B sin 2 x ft) 

The unknown A and B are defined from 

A K(t--)cos2nfrddr=l-A, B K(t-t)sin2nfrdr-4-B 
! 

T 

s hq 
0 0 

For T = k/f (k = 1, 2, . ..) , the solution of the system becomes 

A = 2f [4 n’p (k + 2f) - ka?] / A, B = 8 na f / A, A = 4x2 fL (k + 2 f)* - kW 

Example 3. The iterated right-hand parts of the equation are 

x/2 

c 4 
cos2 (t - T) 9 (T) d? = cos’ t , 

-x*/z 

fn(t)==~““+~,ncOs*t, n= 1,2,..., P,,=&o,-,,+&l -- 1’1” - y+In 

(9) 

Since 
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the solution of the equation is 

In the examples discussed above the iterated right-hand parts are stable, i.e. they have the 

form M 
i,(t) = 2 v,&!,(t) 

tn=o 

When the iterated right-hand parts are stable, the solution (8) can be reduced to the problem 
of solving systems of the type (91, or in other words, to the study of the limits of numerical 
sequences 

,;e &- 1)' (';; ;)vi (10) 

The stability of the iterated right-hand parts and the existence of the finite limits 

(10) or of solutions of the systems (91, form the necessary conditions for obtaining an exact 
solution (8). 

Expanding the functions f%(t) into a power series, we can write the solution of the equa- 
tion also in the form of a power series 

converging in the mean to 'p (0. 

Equation with a degenerated kernel. Let the kernel of (1) be degenerate 

K (t, T) = 2 aj (I) Dj (T) 

j=o 

Then the equation can be written in the form 

,=0 i 

Equation (11) means that if the equation (1) has a solution, then its right-hand part can be 
written as an expansion in terms of the functions 01 (0, a>(t)> , up (0, p < PII . The iterated 
right-hand parts of the equation 

are stable, therefore its solution is 

(12) 

Substituting (12) into (11, reduces it to the form 

K (t, t) cp (r) dr = i 5 aj,vTaj (t) = i bjaj (t) = S (t) 
II j=or=O j=o 

which describes a system of linear equations 

in terms of the unknowns 

1. 

2. 

3. 

4. 
5. 
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